Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic Reinforcement Learning

Ryan Julian November 18th, 2020

Ryan Julian, Benjamin Swanson, Gaurav S. Sukhatme, Sergey Levine, Chelsea Finn, Karol Hausman

Website: https://ryanjulian.me/never-stop-learning

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

Problem: How to make robots (continually) adapt?

End-to-end RL: Lots of success, but mostly it looks a lot like supervised learning

- 1. Collect (a bunch of) data
- 2. Learn from that data
- 3. **Deploy** learned model
- 4. (there is no 4th step)

The **promise** of RL:

- 1. Collect data
- 2. Learn
- 3. Deploy
- 4. **GOTO** 1

Problem: How to make robots (continually) adapt?

94%

50% → 90%

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

Preliminaries: QT-Opt Grasping Architecture

Source: QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Kalashnikov, et al. 2018.

```
Preliminaries: QT-Opt
```


Source: QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based Robotic Manipulation. Kalashnikov, et al. 2018.

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

Transparent Bottles

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

Transparent Bottles Checkerboard Backing

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

Transparent Checkerboard Bottles

Backing

Extend Gripper 1cm

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

Bottles

Checkerboard Backing

Extend Gripper 1cm

Harsh Lighting

- Visual end-to-end RL is surprisingly robust
- No change: most backgrounds, most new objects, broken gripper, normal lighting, offset gripper by up to 5cm

Baseline: What the robot sees

Base Grasping

Extend Gripper 1cm

Checkerboard Backing

Offset Gripper 10cm

Harsh Lighting

Transparent Bottles

• Baseline study creates 5 challenge tasks

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

Case Study: Adding a "Head"

- Conventional SL approach:
 - Train the "body" + "head A" on base task
 - Discard "head 1", graft "head 2" onto network
 - Freeze "body" (or not), update network

Case Study: Adding a "Head"

- Problem: RL needs to explore
 - New head is uninformative for exploration
 - RL agent is unable to collect useful data for the new task
 - Same logic applies to other architectural approaches

Techniques Studied (What didn't work)

- Architectural
 - Adding a Q-function head
 - Training only some layers (front, middle, back, etc.)
 - Re-initializing some layers
 - Training only batch norms
 - etc.
- Sampling
 - Different sampling probability of old/new data
 - Using n-step returns (to get supervision info out of same data)
- What was important
 - Gradients per new sample
 - Learning rate

What does work

- Continue training the entire network
- (there is no second bullet)

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

A Very Simple Method

- Fine-tuning method
 - **Pre-Train:** Pre-trained policy, pre-training data
 - **Explore** using the pre-trained policy (e.g. vanilla grasping)
 - Initialize QT-Opt with pre-trained policy (Q-function), pre-training data, new data
 - Adapt pre-trained policy using RL select new vs. old data with 50% probability
 - Evaluate updated policy on robot
- Completely offline

A Very Simple Method: Experiments

A Very Simple Method: RL Matters

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

Continual Learning: Experiment

Re-train a single lineage of policies repeatedly

Continual Learning: Results

Continual Learning: Results

Continual Learning: Results

Roadmap

- Problem
- Preliminaries
- Baseline Study
- Fine-Tuning for Off-Policy RL
- A Very Simple Fine-Tuning Method
- From Fine-Tuning to Continual Learning
- Insights and Issues

Insights and Issues: Sample Efficiency

Insights and Issues: Knowing when to stop

Insights and Issues: What gets updated?

Conclusions

Offline fine-tuning: A promising building block for continual learning

• Fast

1-4 hours of practice, 0.2%

• Simple

Barely different from regular training

Repeatable

Works in a continual setting with ~0% performance penalty

Future Directions

- How extreme are the target tasks can we adapt to?
 → off-distribution and structural adaptation
- Can we choose to explore (vs. exploit) automatically?
 → off-policy evaluation
- Can we integrate this to create a fully automatic learner?
 - \rightarrow lifelong and continual learning

Thank You!

- Collaborators: Karol Hausman, Chelsea Finn, Sergey Levine, Ben Swanson
- Adviser: Gaurav Sukhatme
- CoRL organizers and reviewers

More Info

- Visit the website: https://ryanjulian.me/never-stop-learning
- Read the paper: <u>https://arxiv.org/abs/2004.10190</u>
- Watch the video: <u>https://youtu.be/pPDVewcSpdc</u>
- Contact me: ryanjulian@gmail.com / https://ryanjulian.me

		Ours (exploration grasps)								Comparisons	
Challenge Task	Original Policy	25	50	100	200	400	800	Best (Δ)	Scratch	ImageNet	
Checkerboard Backing Harsh Lighting Extend Gripper 1 cm Offset Gripper 10 cm Transparent Bottles Baseline Grasping Task	50% 32% 75% 43% 49% 86%	67% 23% 93% 73% 46% 98%	48% 16% 67% 50% 43% 81%	71% 52% 80% 60% 65% 84%	47% 44% 51% 56% 65% 78%	89% 58% 90% 91% 58% 93%	90% 63% 69% 98% 66% 89%	90% (+40) 63% (+31) 93% (+18) 98% (+55) 66% (+17) 98% (+12)	0% 4% 0% 37% 27% 0%	0% 2% 14% 47% 20% 12%	

 ← Every cell is a ~1 hr experiment!

Questions?